Programmer des grammaires avec Bigloo

https://www.laurentbl och.net/BlogL B/Programmer-des-grammaires-avec

Program

- Zinformatiques - Cours de bioinformatique au CNAM -

Date de mise en ligne : mercredi 16 mars 2005

Copyright © Blog de Laurent Bloch - Tousdroitsréservés

Copyright © Blog de Laurent Bloch Page 1/6


https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec
https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

Programmer des grammaires avec Bigloo

L'analyse de textes par ordinateur pour y reconnaitre des motifs est tresfastidieuse si I'on
emploie des algorithmes naifs. L'usage des grammaires réguliéeresfacilite ce travail. Bigloo
dispose d'outils adaptés a cettefin.

L'analyse de textes, au sens large, pour y reconnaitre des formes ou des motifs, est un probléme de programmation
récurrent, spécialement en bioinformatique. Le recours a des algorithmes naifs débouche sur une programmation
particulierement fastidieuse, de surcroit sujette & des erreurs particulierement sournoises.

Or il existe une technique éprouvée pour aborder de tels problemes, ce sont les grammaires régulieres, utilisées au
premier chef pour la construction de traducteurs de langages informatiques, compilateurs ou interpréteurs. Le
compilateur Bigloo pour le langage Scheme met a la disposition du programmeur son propre moteur grammatical,
dont vous trouverez la syntaxe en suivant le lien.

Cette page ne propose pas un cours sur les grammaires régulieres. Mais je suis tombé (un peu tardivement je le
confesse) sur un excellent ouvrage de Jeffrey E. F. Friedl, Mastering Regular Expressions (en francais Maitrise des
expressions régulieres). L'analyse des expressions réguliéres est un des problémes que I'on peut résoudre avec les
grammaires régulieres, parmi bien d'autres. Les expressions réguliéres passent auprés de beaucoup d'informaticiens
(y compris moi avant d'avoir lu Friedl) pour un outil technique de bas niveau, alors qu'il s'agit d'un formalisme
puissant, introduit par Warren McCulloch et Walter Pitts dans leur article fondateur du Bulletin of Math. Biophysics 5
(1943), « A logical calculus of the ideas immanent in nervous activity », qui a joué un rble décisif, pour le meilleur et
pour le pire, dans la naissance de l'informatique moderne et de l'intelligence artificielle. C'est Ken Thompson qui a
publié en 1968 le premier article consacré a I'utilisation concréte des expressions régulieres dans une perspective de
programmation informatique, en l'occurrence un compilateur d'expressions réguliéres, précurseur de I'éditeur de
texte ed sous Unix.

Le livre de Friedl révele toute la portée intellectuelle des expressions régulieres, en méme temps qu'il propose aux
lecteur des exercices subtils et amusants, qui vont de la conversion de degrés Farenheit en degrés Celsius a la mise
en forme de pages de cours de la bourse. Je me suis dit qu'il serait amusant de comparer les langages, et pour cela
de résoudre certains exercices du Friedl avec Bigloo.

Il'y a deux familles de moteurs de grammaires réguliéres, ceux qui reposent sur des automates a états finis
déterministes (DFA dans la suite), et ceux qui utilisent les automates a états finis non-déterministes (NFA dans la
suite). Il n'est pas dans mon propos d'écrire un texte sur la théorie des automates et des langages, mais les liens
présents ici vous donneront quelques reperes pour savoir de quoi il s'agit.

Le moteur grammatical de Bigloo est de type DFA : les moteurs DFA ont I'avantage de donner des grammaires
rapides et surtout qui analysent en temps constant. Leur défaut est que I'analyse ne peut jamais « revenir en arriére
», et qu'il est de ce fait impossible de capturer dans une variable un résultat partiel de I'analyse. Mais dans le cas de
Bigloo cet inconvénient peut étre contourné grace au fait que nous disposons, pour effectuer des actions en fonction
des étapes de l'analyse, d'un langage de programmation Turing-équivalent, en l'occurrence Bigloo.

En fait, une grammaire réguliére de Bigloo ressemble a un cond Scheme, ou pour chaque clause la condition du cond
serait remplacée par une régle de la grammaire, suivie comme dans un cond d'une séquence d'expressions Scheme,
qui seront évaluées si la régle de la grammaire a reconnu une chaine de caractéres dans le texte analysé. L'action

i gnor e permet de continuer I'analyse aprés une reconnaissance partielle. L'exemple a la fin de cette page devrait

Copyright © Blog de Laurent Bloch Page 2/6


http://en.wikipedia.org/wiki/Parsing
http://www-sop.inria.fr/mimosa/fp/Bigloo/
https://www.laurentbloch.net/BlogLB/Sources-utiles-pour-debuter-en
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo-10.html#Regular-parsing
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo-10.html#Regular-parsing
http://dict.regex.info/cgi-bin/j-e/jfriedl.html
http://regex.info/
http://www.oreilly.fr/catalogue/regex2.html
http://www.oreilly.fr/catalogue/regex2.html
http://www.cs.bell-labs.com/who/ken/
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_finite_state_machine
http://en.wikipedia.org/wiki/Deterministic_finite_state_machine
http://en.wikipedia.org/wiki/NDFA
http://en.wikipedia.org/wiki/NDFA
http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Deterministic_finite_state_machine
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/r5rs-7.html#Conditionals
https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

Programmer des grammaires avec Bigloo

aider a la compréhension. Cette ressemblance n'est que patrtielle, il y a entre la sémantique du cond et celle des
grammaires de Bigloo une différence expliquée ci-dessous.

L'exemple qui sert de fil conducteur a toute la premiére partie du livre de Friedl consiste a résoudre le probléme
suivant : il s'agit de relire un texte électronique, ensemble de pages WWW ou manuscrit en LaTeX, réparti en un
nombre arbitraire de fichiers, pour y détecter les mots redoublés par erreur, comme si j'écrivais « comme comme »
par exemple. Tout auteur de textes sait que ce type d'erreur est aussi fréquent que difficile a voir a I'ceil nu. Voici
I'énoncé du probléme de Fried! :

— analyser des fichiers en nombre quelconque ; afficher, pour chaque fichier, chaque ligne qui comporte des mots
redoublés en mettant en valeur le mot en question dans la ligne ; il faut aussi afficher le nom du fichier concerné et le
rang de la ligne dans le fichier ;

— les mots redoublés devront étre détectés méme s'ils different par la casse (comme dans
« Ainsi ainsi ») ou s'ils sont séparés par un nombre arbitraire d'espaces, de caractéres de tabulation, de sauts de
ligne, etc.

— la détection devra également se jouer des balises HTML, comme ici :
« treés tres ».

La question est loin d'étre simple ! Friedl donne une solution en Perl, puis en Java. Vous trouverez ci-dessous une
solution partielle avec Bigloo, que je vous invite a compléter

(en vous aidant de la documentation du moteur grammatical ). Voici le programme complet, le commentaire des
passages grammaticaux est en-dessous :

Copyright © Blog de Laurent Bloch Page 3/6


http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo-10.html#Regular-parsing
https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

Programmer des grammaires avec Bigloo

(rmodul e detect-the-doubl es

(main start))

(define *THE- PORT* #unspecified)
(define *LI NE- NUMBER* 1)

(define (start args)

(let Toop ((file-list (cdr args)))
(if (not (null? file-list))
(let ((the-file (car file-list)))

(set! *LI NE-NUVBER* 1)
(print the-file " : ")

(set! *THE- PORT*
(open-input-file the-file))
(the-reader)

(cl ose-input-port *THE- PORT*)
(loop (cdr file-list))))))

(define (the-reader)
(read/rp the-grammar *THE- PORT*))

(define the-gramrar
(let ((previous-word "")
(last-word ""))
(regul ar-granmar ()
((: # newine)
(set! *LINE-NUMBER* (+ *LI NE- NUVBER* 1))
(ignore))
((+ (in #\space #\tab #\ #\" #\' #/ #* #
&L= | B@H()<>[]{}«»" digit
#al160))
(ignore))
((+ (in al pha "ééaauétiounecEEAAUET | QUUEC"))
(set! previous-word | ast-word)
(set! last-word (the-string))
(if (string-ci=? previous-word | ast-word)
(print ™ line n® " *LI NE- NUMBER*
previ ous-word " "
| ast-word ))
(ignore))
(el se
(let ((this-char (the-failure)))
(if (not (eof-object? this-char))
(begin
(print #\newline "----")
(di splay* "Ligne " *LI NE- NUVBER*)
(print " the wong character
this-char " its ASCII code : "
(char->integer this-char))))))
)))

Copyright © Blog de Laurent Bloch

Page 4/6



https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

Programmer des grammaires avec Bigloo

* La grammaire réguliere proprement-dite commence a la ligne :

(regul ar-granmar ()

Comme je I'ai indiqué plus haut, le traitement d'une telle expression est analogue a celui d'un cond, avec une
différence notable :

» pour le cond I'évaluateur examine dans I'ordre les conditions qui figurent en téte de toutes les clauses, et il
s'arréte a la premiére clause dont la condition s'évalue en donnant comme valeur vrai (#t ) ; il évalue alors,
dans l'ordre, les autres expressions contenues dans cette clause, et n‘examine pas les clauses suivantes ;

e pour une grammaire réguliere, I'évaluateur examine toutes les régles, sélectionne celle qui permet de
reconnaitre la chaine de caractéres la plus longue, et évalue alors les expressions associées a cette régle.

e La premiére régle de notre grammaire est celle-ci :

((: #\newine)
(set! *LINE-NUMBER* (+ *LI NE-NUMBER* 1))

(ignore))

La forme (: introduit une séquence d'expressions réguliéres ; le langage reconnu ici est constitué de l'unique
caractere #\ new ine ; si # new i ne est reconnu, I'action effectuée consiste a incrémenter la variable globale
* LI NE- NUMBER*, puis, c'est le sens de (ignore), a continuer I'analyse.

» Voici la seconde regle :

((+ (in #\space #\tab #\ #\" #' #/ #A* #
"& L, 1P| OB@#H() <>[]{}«»” digit
#a160))

(ignore))

Le langage reconnu est constitué d'au moins un caractéere non-alphabétique, suivi d'un nombre quelconque de ses
semblables. L'action consiste simplement a continuer I'analyse.

e Troisieme regle :

((+ (in al pha "ééaauétiounecEEAAUET | QUUEC"))
(set! previous-word | ast-word)
(set! last-word (the-string))
(if (string-ci=? previous-word | ast-word)
line n° " *LI NE- NUVBER*

(print

previ ous-word
| ast-word ))

(ignore))

Copyright © Blog de Laurent Bloch Page 5/6



https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

Programmer des grammaires avec Bigloo

L'expression réguliére (+ (in al pha "éeaauéli 6utegEEAAUET T QUUEC')) reconnait la plus longue séquence
ininterrompue de caractéres alphabétiques, c'est-a-dire quelque-chose que nous pouvons considérer comme un mot,
séparé du précédent et du suivant par un espace ou un autre caractére analogue. A noter le cas délicat des mots
précédés d'un article lié au mot par une apostrophe, qui n'est pas traité parfaitement ici. Les actions effectuées dans
ce cas visent a comparer les deux derniers mots rencontrés, a émettre un diagnostic s'ils sont égaux, puis a
continuer l'analyse.

e Quatriéme régle, cas non prévus :

(el se

(let ((this-char (the-failure)))
(if (not (eof-object? this-char))

(begin
(print #A\newline "----")
(di splay* "Ligne " *LI NE- NUVBER*)
(print " the wong character
this-char " its ASCI| code :
(char->integer this-char))))))

Si un caractere n'est reconnu par aucune des régles précédentes, il va déclencher l'arrét de l'analyse : c'est ce cas
gue traite notre quatrieme et derniere regle. L'accés au caractére en question est donné par la forme Bigloo
(the-failure). llyaun cas évident et normal, qui se produit lorsque I'analyse arrive a la fin du fichier : ce cas est
détecté par la condition (eof-object? (the-failure)). Dans les autres cas, il peut é&tre commode d'afficher le
caractére concerné et son code ASCII, a des fins de dépannage.

Copyright © Blog de Laurent Bloch Page 6/6



https://www.laurentbloch.net/BlogLB/Programmer-des-grammaires-avec

